当前位置:首页 > 教学资料 > 教学设计

六年级《圆锥体积》教学设计

时间:2024-11-04 07:52:21
六年级《圆锥体积》教学设计

六年级《圆锥体积》教学设计

作为一名辛苦耕耘的教育工作者,时常要开展教学设计的准备工作,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。写教学设计需要注意哪些格式呢?以下是小编为大家收集的六年级《圆锥体积》教学设计,欢迎阅读与收藏。

六年级《圆锥体积》教学设计1

第一课时

教学目标:

1、使学生理解求圆锥体积的计算公式.

2、会运用公式计算圆锥的体积.

3、培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。

教学重点

圆锥体体积计算公式的推导过程.

教学难点

正确理解圆锥体积计算公式.

教学过程:

一、铺垫孕伏

1、提问:

(1)圆柱的体积公式是什么?

(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高.

2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题.(板书:圆锥的体积)

二、探究新知

(一)指导探究圆锥体积的计算公式.

1、教师谈话:

下面我们利用实验的方法来探究圆锥体积的计算方法.老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土.实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里.倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?

2、学生分组实验

学生汇报实验结果

①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满.

②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满.

③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满.

……

4、引导学生发现:

圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的 .

板书:

5、推导圆锥的体积公式:用字母表示圆锥的体积公式.板书:

6、思考:要求圆锥的体积,必须知道哪两个条件?

7、反馈练习

圆锥的底面积是5,高是3,体积是()

圆锥的底面积是10,高是9,体积是()

(二)算一算

学生独立计算,集体订正.

说说解题方法

三、全课小结

通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

四、课后反思

第二课时

教学目标:

1、进一步掌握圆柱和圆锥体积的计算方法,能正确熟练地运用公式计算圆锥的体积。

2、进一步培养学生运用所学知识解决实际问题的能力和动手操作的能力。

3、进一步熟悉圆锥的体积计算

教学难点:

圆锥的体积计算

教学重点:

圆锥的体积计算

教学过程:

一、基本练习

圆锥体积计算公式

相邻两个面积单位之间的进率是多少?

相邻两个体积单位之间的进率是多少?

二、实际应用

占地面积是求得什么?

三、实践活动

四、课后反思

六年级《圆锥体积》教学设计2

教学内容:

第25-26页,例2及练习四的第3、4题。

教学目标:

1、通过分小组倒沙的实验,使学生自主探索圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

2、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

3、通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

教学重点:

掌握圆锥体积的计算公式。

教学难点:

1、理解圆锥体积公式的推导过程;

2、掌握圆锥体积计算方法并能运用解决简单的实际问题。

教学准备:

1、学生预习教材;

2、教师准备等底等高的圆柱和圆锥形容器若干个,沙土,直尺,平板。

教学过程:

一、复习

1、圆柱的体积公式是什么?(学生交流后做幻灯片中的练习题)

2、说一说圆锥有哪些特征。

a、出示实物图,学生说一说生活中的圆锥形物体

b、总结圆锥的特征,学生齐读。

二、导入新课

1、幻灯出示一圆锥形沙堆

2、师:操场上,同学们要计算这堆沙子的体积,怎么计算呢?

引出课题:这就是这节课我们要探索的问题

3、板书课题

三、探索新知

1、学习圆锥体积的推导公式

(1)思考:圆柱的体积公式是怎样推导出来的?(学生交流讨论,教师及时鼓励学生回答)

(2)师:我们能不能也通过已学过图形来求圆锥的体积呢?

学生小组讨论交流

(3)师:有的同学提出了做实验的方法,那么需要哪些器材呢?

学生交流后,幻灯出示实验器材

(4)师:用这些器材怎样做实验呢?

学生小组讨论后,教师:下面,我们就来试一试这种方法

(5)学生做实验

A、观察自己手中的圆柱与圆锥,讨论他们的共同点。(等底等高)

师:下面的时间,请同学们按照实验报告单的步骤做实验,并将结果填入实验报告单中。(教师巡视指导)

B、集体交流实验结论,大屏幕演示结果

C、想一想:通过实验你发现了什么?

要求一个圆锥的体积,必须具备哪两个条件?

明确:求圆锥的体积,圆锥的底面积和高是必备的直接条件。

(6)练习

2、拓展内容

(1)有些情况下,题目中并不直接告诉圆锥的底面积和高,如果遇到下列情况,我们该如何求圆锥的体积呢?

(2)学生分小组讨论,填写表格。(教师巡视指导)

(3)集体交流,大屏幕展示结果

(4)练习:

3、巩固练习

三、拓展知识

1、出示几组不同的情况,指定每组完成一项

2、展示结果

3、练习

四、小结

师:同学们,今天这节课你都学会了什么?

学生交流回答,教师板书

五、作业设计

六、板书设计

圆锥的体积

等底等高的圆锥和圆柱,

圆锥的体积是圆柱体积的

六年级《圆锥体积》教学设计3

教材内容的分析:本课“圆锥的认识和体积”是在学生学习了圆柱体积的基础上进行的。教学时首先认识、理解圆锥体的特征,直观又形象。然后通过用空心圆锥向空心圆柱的容器里倒水的实验得到圆锥的体积公式。进而培养学生的主动探究能力和合作精神。

教学目标:

(1)掌握圆锥特征、引导学生通过实验推导出圆锥体积计算公式,并能运用公式计算圆锥的体积,解决有关的实际问题;

(2)培养学生的观察、逻辑思维能力和初步的空间观念;

(3)向学生渗透知识间可以相互转化的辩证唯物主义思想,学习将新知识转化为原有知识的学习方法。

教学重点:掌握圆锥特征、圆锥体积计算公式推导过程。

教学难点:圆锥体积计算公式推导过程。

教具、学具准备:等底等高的圆柱和圆锥空心实物,任意一个圆柱和圆锥,若干沙子或水。

教学准备:圆锥水等底等高的圆柱、圆锥容器大三角板直尺

教学过程:

一、进入学习情境

1.开始,回忆学过的立体图形,并板书圆柱的体积公式。今天我们来认识一种新的立体图形。

2.观察课本实物图:铅锤、谷堆、冰激凌等。

(1)这些物体的形状与圆柱体一样吗?哪里不一样?根据这些物体的形状,你们能给它们起个名字吗?(引导说出“圆锥”)

(2)在我们的身边还有哪些物体是圆锥体?(学生举例如路障、喇叭、跳棋)

3、师:你知道圆锥各部分的名称吗?圆锥有哪些特征?

拿出圆锥模型,介绍圆锥的特征。

(1)用手摸一摸圆锥,你发现了什么?

(小组内先互相说一说,后师板书:

1、圆锥有一个顶点

2、圆锥只有一个底面,这个底面是个圆形。

3、侧面是一个曲面,展开图是扇形。)

从实物图中抽象出一个圆锥的立体图形来,教师画一个不带高的圆锥图。

出示两个圆锥(一个高,一个矮),观察这两个圆锥,你发现了什么?是由圆锥的什么决定的?(板书:高)

下面我们来研究圆锥的高。你想知道圆锥高的哪些知识?

1、什么是圆锥的高?

2、几条高?为什么只有一条高?

3、怎么测量圆锥的高?)

问:谁来回答第一个问题?(齐读板书)

再看第二个问题(1条高)指出高,怎么画?为什么画虚线?所以我们一般用虚线表示。

你认为测量时要注意什么?

(2)明确并板书:圆锥的底面是个圆,圆锥的侧面是一个曲面,从圆锥的顶点到底面圆心的距离是圆锥的高。因为圆锥只有一个顶点,所以它只有一条高。

4、了解了圆锥体的特征,我们再来研究圆锥体的体积公式。怎样计算一个圆锥物体的体积呢?我们学习圆柱体积公式的时候借助以前学过的长方体,今天我们学习圆锥体体积也可利用刚刚学过的圆柱体的体积,大家猜一猜,圆锥的体积与圆柱体积有什么关系?

(板书课题:圆锥的体积)

二、自主学习

探索圆锥体积与圆柱体积的关系。

1、师出示实验要求:把空圆锥装满水,倒入空圆柱中,测量高度,几次装满,统计次数填入实验报告单。

2、汇报交流

(1)小组讨论:通过刚才的实验和统计,你发现了什么?圆柱的体积和圆锥的体积有什么关系?是不是任意两个圆锥体和圆柱体就有这样的关系呢?再来看实验。

(2)小组代表汇报交流:圆柱体积等于和它等底等高的圆锥体积的3倍,圆锥的体积等于和它等底等高的圆柱体积的三分之一。

教师强调等底等高这个前提条件

3、概括圆锥体积公式:

师:圆柱的体积是:体积=底面积×高用字母表示V=Sh那么和它等底登高的圆锥体体积是圆柱体积的三分之一怎样表示呢?

圆锥体体积=1/3×底面积×高V=1/3sh

三、实践运用

根据这个公式我们可以解决一些实际问题

1、一个圆锥形的零件,底面积是28.26平方厘米,高是14厘米,这个零件的体积是多少立方厘米?

一生板演,汇报

2、一个圆锥形,底面直径是4厘米,高6厘米,这个圆锥的体积是多少立方厘米?

四、课堂练习

(1)S=20平方米h=12米(2)r=10米h=15米

(3)d=6米h=10米(4)c=62.8米h=9米

五、小结:

今天我们学习了圆锥体,你有哪些收获?

学生汇报:1、圆锥体的特征

2、圆锥体的体积公式

六年级《圆锥体积》教学设计4

教学目标:

1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的`计算公式,能运用公式解答有关实际问题。

2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探索和发现的过程,推导出圆锥的体积公式。

3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。

教学重点: 通过实验的方法,得到计算圆锥的体积。

教学难点:运用圆锥的体积公式进行正确地计算。

教学准备:等底等高的圆柱和圆锥容器模型各一个。

教学过程:

一、复习导入

师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。

1、圆柱体积的计算公式是什么? (指名学生回答)

2、圆锥有什么特征?

同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!(板书:圆锥的体积)

二、探究新知

课件出示等底等高的圆柱和圆锥

1、引导学生观察:这个圆柱和圆锥有什么相同的地方?

学生回答:它们是等底等高的。

猜想:

(1)、你认为圆锥体积的大小与它的什么有关?

(2)、你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?

2、学生动手操作实验

(1)、用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?

(2)、通过实验,你发现了什么?

小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一 。

3、教师课件边演示边叙述:现在圆锥和圆柱里都是空的。看看圆柱和圆锥有什么相同的地方?(等底等高)请同学们注意观察, 用圆锥装满水往圆柱里倒,倒几次才把圆柱倒满?

问:把圆柱装满一共倒了几次?

生:3次。

师:这说明了什么?

生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。(板书:圆锥的体积= 1/3×圆柱体积 )

师:圆柱的体积等于什么?

生:等于“底面积×高”。

师:那么,圆锥的体积可以怎样表示呢? (板书:圆锥的体积= 1/3×底面积×高)

师:用字母应该怎样表示? (V=1/3sh)

师:在这个公式里你觉得哪里最应该注意?

三、教学试一试

一个圆柱形零件,底面积是170平方厘米,高是12厘米。这个零件的体积是多少立方厘米?

四、巩固练习

1、计算圆锥的体积

2、判一判

3、算一算

4、拓展延伸

五、总结

通过这节课的学习,你有什么收获呢?

六、板书:

圆锥的体积=圆柱的体积×1/3

圆锥的体积=底面积×高×1/3

用字母表示V=1/3sh

《六年级《圆锥体积》教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式